NethackDS Manual

Brett Kosinski

January 7, 2008

Contents
1 The Introduction

2 The User Interface
2.1 Overview
2.2 Game Map.
2.3 Status Display
2.3.1 The Minimap
2.4 Menus and Text

2.5 The Command Window

3 The Control Scheme
3.1 The Joypad

3.2 The Touchscreen

4 The Configuration System 7

4.1 The Configuration File oL 7
4.1.1 Map Display Settingso 8
4.1.2 User Interface Settings 9
4.1.3 Compass Mode 9

4.2 The Key Binding System oo 9
4.2.1 Key (har har) Concepts 10
4.2.2 Key Configuration Settings 10
423 Key Binding 11

4.3 Other Data Files 11
4.3.1 Palette File Format 0oL 11

5 The Credits and Acknowledgements 12

1 The Introduction

NetHackDS is a port of the game NetHack to the Nintendo DS™video game system. For
those unfamiliar with the game NetHack, it might be best to first familiarize yourself with
the basic game itself. You can find detailed information on NetHack, the game, at the project
home page: http://www.nethack.org.

NetHack is typically referred to as a roguelike game. In this sense, it features a hero wan-
dering around in a virtual world, acquiring equipment, items, and money, in the hopes of
completing some goal or quest. In the case of NetHack, the goal is to retrieve the Amulet
of Yendor from the depths of the dungeon, whereupon you must return and sacrifice the
amulet to your god. It sounds simple on the surface, but the path to ascension is a long and
arduous one, frought with many perils. Not the least of which is the destructive nature the
game often has on grades, job performance, and so forth.

Traditionally, NetHack is played on a computer, and as such, makes extensive use of the
keyboard as a vehicle for user interaction. This makes translating the game to a portable
device particularly challenging as compared to other game porting efforts. However, I hope
I have succeeding in creating something that is both easy and enjoyable to play, both for
experienced NetHack players, as well as neophytes.

2 The User Interface

2.1 Overview

The game display in NetHackDS is divided between the two screens of the Nintendo DS™ as
follows:

1. On the bottom screen is rendered the game map, where a viewport into the world
is rendered. It is here that the dungeon is displayed, along with the hero, monsters,
items, etc.

2. On the top screen is rendered the status display, where information about the hero is
shown, as well as a miniature rendering of the current level.

Of course, the bottom screen is also used to interact with the user in a number of other
ways. Most importantly, it is on the bottom screen that the command window is rendered,
through which the user may direct their actions in the game. Additionally, menus and text
windows are displayed there.

2.2 Game Map

The game map displays a subset of the current visible level. Among the notable features
are:

1. The hero, who is highlighted by either a graphical or textual cursor (depending on
configuration).

2. Dungeon features, such as walls, floors, doors, hallways, furniture, etc.
3. Monsters, both friendly and unfriendly.

4. Ttems, such as gold, scrolls, potions, wands, armor, weapons, and so on and so forth.

Note, the visible portion of the current level may be panned by either dragging with the
stylus, or using keys bound to the various map panning functions, as described in section
3.1.

Additionally, the user may directly control the game in a number of ways using the touch-
screen. For more details, see section 3.2.

2.3 Status Display

The status display, present on the top screen, provides various information about the player
and the game. Among the key features visible, there is:

1. The minimap, which shows a scaled down view of the current level map.

2. The player status lines, which provide information about various player attributes, as
well as the current dungeon level, and so forth.

3. The game message window. This presents various information about events occuring
within the game.

2.3.1 The Minimap

The minimap shows a wealth of information in a compact display. On it you will see rendered
a red box, which represents the current viewport visible on the bottom screen, as well as any
dungeon features visible or discovered, presented as coloured regions. The various colours
correspond to different features on the map, and include:

Green The Hero
Red Monsters
Purple Pets
Dark Yellow Doors
Black Floors
Blue Stairs
Light Yellow Altars
White Walls, Furniture, etc.

2.4 Menus and Text

There are a few basic user interface elements present in NetHackDS. Among the most impor-
tant are the menu and text window displays. As you would expect, these are used to present
modal, scrollable lists of textual information or items that the user may select. Typically,
these displays are activated in response to actions taken by the user (for example, displaying
the item inventory).

Controls in menu and text windows are fairly simple:

Right | Page Down
Left | Page Up
Up | Move Item Selector Up
Down | Move Item Selector Down
X Select Item or Increment Counter
Y Deselect Item or Decrement Counter
A Dismiss Menu/Text Display
B Cancel Menu/Text Display
Select | Select/Deselect All Items

Additionally, menu and text windows can be interacted with using the stylus. In particular:

e Tapping an item in a menu will select it or increment it’s counter.

e Tapping an item while holding L. or R will deselect it or decrement it’s counter.

Tapping the arrows at the top/bottom of the screen will page the display up/down.

Tapping the checkmark icon will dismiss the menu (equivalent to pressing A).

Tapping the X icon will cancel the menu (equivalent to pressing B).

2.5 The Command Window

Like all roguelikes, NetHack’s gameplay is centered around a vocabulary of verbs. These
verbs define all actions which can be taken in the game, and in NetHack, this vocabulary is
large. Very large. Of course, NetHack’s traditionally keyboard-based control scheme makes
such a game possible, as verbs can be mapped to various keys on the keyboard. However, on
a portable device, things are not so easy, and so the command window provides an interface
to the set of verbs available in the game.

In the default configuration, the command window is activated by pressing and holding the
left trigger button. This brings up a display of verbs organized in columns, which may then
be selected by using the joypad or the touchscreen. When the joypad is used, the direction
keys can be used to highlight verbs, and selection is done by pressing the X or A buttons.

Additionally, actions may be repeated some number of times based on a count provided by
the user. To indicate a repeated action is desired, tap-and-hold the action using the stylus
until a keyboard appears. Then type in the repeat count desired, and press the Enter button
on the keyboard.

3 The Control Scheme

3.1 The Joypad

The default NetHackDS control scheme is set up as follows:

Up Move Up
Down Move Down
Left Move Left
Right Move Right
R+Up | Pan Map Up
R+Down | Pan Map Down
R+Left | Pan Map Left
R+Right | Pan Map Right

A Pick Up

B Search

X Open

Y Kick

L Display Command Window

3.2 The Touchscreen

In addition to using the joypad, the user may also interact with the game map using the
touchscreen. For example:

e Tapping on an adjacent, empty square will cause the hero to move into that square.

e Tapping on a non-adjacent square will cause the hero to move to that location (or as
close as possible to it).

e Tapping on an adjacent, non-empty square will cause the hero to interact with the
item in that square.

e Tapping on the hero while they are standing over something will cause the hero to
interact with the item in question.

In the last two cases, the type of interaction will depend upon the item in question. For
example:

e Tapping an adjacent monster will cause the hero to attack it.

e Tapping an adjacent door will cause the hero to attempt to open it.

e Tapping the hero while standing over stairs will cause the hero to climb them.

e Tapping the hero while standing over a container (box, bag, etc), will cause them to
try and loot it.

e Tapping the hero while standing over a sink or fountain will cause them to attempt to
drink from it.

And so forth. Lastly, in some instances, the game may prompt the user for directional input
in order to complete a command (eg, zapping a wand, throwing a weapon, etc). In this case,
the map can be tapped in order to indicate the direction. Specifically:

e Tapping an adjacent square will input the corresponding direction (ie, tapping the
upper-right square will indicate a direction of up-right).

e Tapping the hero will indicate the hero (equivalent to .").

e Tapping-and-holding on the hero (press and hold the stylus on the hero) will indicate
the floor (equivalent to '>7).

4 The Configuration System

Because tastes among users strongly vary regarding control schemes, display features, and
so forth, NetHackDS is, above all, designed to be highly customizable. As such, the game
provides a deeply flexible keybinding system, as well as a wide array of features which may
be enabled to disabled as the user desires, in addition to the standard configurable features
available in NetHack.

4.1 The Configuration File

Much of the configuration in NetHackDS is managed through a file called “defaults.nh”,
present in the NetHackDS directory. This text file, which can be modified with a simple
text editor, exposes a wide array of configurable settings. Here I will limit the discussion
to major NetHack options relevant to NetHackDS, and NetHackDS-specific settings. The
remaining options are documented on the NetHack website.

The general format of the configuration file is a set of directives and values, separated by an
equals sign ('="). The directives may be one of:

OPTIONS Game option directive, used to turn on or off various features.
MENUCOLOR | Used to define colors for menucolor mode.
CHORDKEYS | Defines the set of chord keys (for key binding, see below).
HELPLINE1 | Controls the key help displayed in the status window.
HELPLINE2

Note, multiple copies of each directive may be present in the file, and are all honoured.

In the case of OPTIONS lines, multiple game options may be specified. Options are separated
by commas, may be preceeded by an exclamation point (’!") to indicate negation, and for
compound options (options which take an operand), the option name and value are separated
by a colon (:”) character. For example:

OPTIONS=autopickup,pickup_types:$,'menucolors

In this case, we have three options defined. The first is a simple boolean option, the second
is an option taking a value, in this case the string '$’, and the third is a negated boolean
option.

4.1.1 Map Display Settings

Traditionally, NetHack was played on Unix terminals, and as such, the entire game was ren-
dered in simple ASCII graphics. However, as the game progressed, optional tile-based graph-
ics were added, which are typically used in Windows, X11, and other graphical ports. That
said, purests such as myself still prefer the ASCII graphics version, and as such, NetHackDS
supports both ASCII and tile-based graphics modes, the latter being the default setting.

The following options affect how the map is rendered:

tile_file:<file_name> | A 16- or 256-color BMP file containing the graphics tiles to use.
tile_width:<width> | The width of each tile (must be a multiple of 8).
tile_height:<height> | The height of each tile (must be a multiple of 8).

color In text mode, specifies that color should be used.
ibmgraphics In text mode, specifies that IBM graphics characters should be
used.

cursor:<cursor_mode> | In text mode, how to display the cursor. 0=always, 1=not on
hero, 2=never.

Note, text mode is enabled simply by omitting the tile_file option from the configuration.

4.1.2 User Interface Settings

There are a number of settings available which can be used to fine-tune the user interface.

Option Name | Description Default

cmdwindow Determines whether or not the command window or a on
virtual keyboard should be used for command input.

holdmode Determines whether or not the command key toggles, or on
simply displays, the command window.

doubletap If enabled, item selection with the stylus requires two off
taps.

hpmon If enabled, colours the hitpoint monitor based on level on
of damage.

menucolors If enabled, allows user-customizable colouring of menu on
items.

mapcolors If enabled, certain dungeon features are coloured off
different (eg, walls in the gnomish mines, etc).

4.1.3 Compass Mode

Compass Mode is an alternative stylus control scheme, inspired by (and code swiped from)
the iRogue project. In this mode, one can consider the screen as being divided into a set
of eight wedges, centered around the hero or the center of the screen, depending on the
configuration settings. Tapping within a given wedge indicates the hero should move in that
direction. Tapping near the compass center results in a single step. Tapping further away
results in running.

Compass Mode is controlled using the 'compassmode’ option, which takes one of the following
values:

0 | Disabled
1 | Relative Mode (compass is centered on the hero)
2 | Absolute Mode (compass is centered on the middle of the screen)

4.2 The Key Binding System

As has been alluded to previously, NetHackDS sports an extremely flexible keybinding sys-
tem, which is controlled through a combination of settings in the configuration file, as well
as an in-game key configuration system.

4.2.1 Key (har har) Concepts

On the standard PC keyboard, keys such as Alt and Shift are unusual. These keys, when
pressed, trigger no action on their own!. Instead, they alter the behaviour of other keys.
Similarly, the NetHackDS key binding system differentiates keys based on whether or not
they are “chord keys” (to Unix users, these are more familiarly known as “meta” keys), keys
which can be combined with other keys for binding purposes, or regular keys.

But, unlike a PC, which has a strict set of chord keys, NetHackDS allows the flexibility to
control which keys are chord keys, in addition to controlling which commands are bound to
which keys/key combinations, which allows for incredibly flexible key binding.

Lastly, there is one “special” key in NetHackDS, the command key. It is this key which
brings up the command window. And, again, there is an option for controlling which key is
mapped to this functin.

4.2.2 Key Configuration Settings

Key configuration in NetHackDS is controlled by one configuration directive, CHORDKEYS,
and one configuration option, cmdkey. CHORDKEYS specifies the list of chord keys, and is
defined as a comma-separated list of key names. For example:

CHORDKEYS=up,down,left,right

would define the various directions on the D-Pad as chord keys (and is essentially identical
to the DSCrawl key arrangement). Valid key names include: up, down, left, right, a, b, x,
y, select, start, r, and I.

Additionally, the cmdkey option takes, as a value, a key name, and defines which key is used
to open the command window. For example:

OPTIONS=cmdkey:start

would define the Start button as the key which brings up the command window.

1Okay, that’s not strictly true. For example, in the Windows operating system, Alt, when pressed then
released, focuses the menu in the current window. Similarly, in NetHackDS, chord keys may have actions
bound to them if they are pressed then released.

10

4.2.3 Key Binding

The actual process of binding keys (mapping keys or key combinations to actions) is done in-
game using the “Key Config” action in the command menu (or F1, if the command window
has been disabled). Upon selecting the “Key Config” action, the user is asked to press a key
or key combination for binding purposes. This can be any key or a combination of chord
key(s) and a regular key. After the key or key combination to be bound is pressed, a menu
is presented offering a number of command subgroups, including;:

Movement Various Hero movement operations, including regular movement,
running, and fight operations

Game Command | Standard game commands. Brings up the command window (or
virtual keyboard, if the command window is disabled).

Toggle Option Boolean game options. Binding a key to one of these causes the
option to be toggled when the key is pressed.
Map Panning Commands for moving the map viewport around.

No Command Effectively “unbinds” the key in question.

Note, when binding game commands, repeat and extended commands are perfectly valid
selections.

4.3 Other Data Files

There are a number of data files which NetHackDS makes use of. The following is a list of
those files along with a simple description of their function and format.

font.bdf BDF-format font file used for menus, text, status display, etc.

map.bdf BDF-format font file used for the text-based map graphics. Note, the
font characters in this file are padded out to a multiple of 8 when used
in-game.

kbd.pal The palette file for the virtual keyboard graphics.

map.pal The palette file for the text-based map graphics.

minimap.pal | The palette file for the minimap.

text.pal The palette file used for menus, text, status display, etc.

4.3.1 Palette File Format

The palette files used in NetHackDS are simple text files. Any blank lines, or lines prefixed
with a pound ('#’) are ignored. All other lines must be bare six-digit hexadecimal values
(lower-case characters only) representing RGB triplets.

11

5 The Credits and Acknowledgements

NetHackDS wouldn’t exist without the invaluable contributions from many others. Below
are just a few without whom this port would not exist:

e This code has it’s roots in the first NetHackDS port, created by Stuart Pernsteiner
(aka “Wosret”). While the actual implementation is essentially a rewrite, I borrowed
much (such as the keyboard handling code), and benefitted greatly from his initial
porting effort.

e Of course, there’s the NetHack DevTeam, without which this port wouldn’t exist (and
I would’ve spent many hours doing far more productive things with my time).

e The Devkitpro folks, and all those who've contributed to the project. In particular,
libnds has been unsurprisingly invaluable.

e Chism for his work on libfat.
e Masscat for his GDB stub. I probably would’ve given up without it.
e The dswifi developers, without whom Masscat’s stub would’ve been useless.

e Oddly, the Foobillard developers. I snagged their BDF font rendering and PPM han-
dling code. :)

e Stumpy, for his superb ANSI fontsets, from which I scavenged.
e Tobias Jung, for making ProFont available.

e The authors of the surprisingly portable PCRE, without which menucolors support
would’ve been a non-starter.

e Many users for providing valuable feedback and feature suggestions.

12

